First, a few comments—

- To help students with early registration for Summer 2023 courses, we are posting the final syllabus (v2) that was used by the PHYS S165/S166 lab courses, in Summer 2022. This should give you a good idea about the structure and philosophy of the Summer 2023 edition of the course, as the two courses will be quite similar, except for the tweaks that we promise to make to improve the course!
- The full list of TFs and Instructors won’t be known until later in the spring.
- If you have questions that are not answered by this draft syllabus, please write to me (Prof. Barrett) at sean.barrett@yale.edu.
- Thanks for your interest in PHYS S165/S166 lab. We hope to see you in the Summer!

Next, here is the Summer 2022 syllabus—

Physics 165 and 166 is the two-semester General Physics Laboratory course of the Yale University Physics Department. The aim of the course is to teach physical principles and concepts by direct experience, in addition to developing the scientific skills of handling and interpreting numerical data, and learning how to effectively communicate the results of those measurements to others.

As you probably know, from late Spring 2020 through Summer 2021, the COVID-19 pandemic forced this physics course to be online-only. To make the best of a challenging situation, we implemented a course redesign, striving to match the in-person experience as closely as possible. We discovered many ways to improve the labs through this process, and built upon this foundation as we returned to in-person labs for Fall 2021 & Spring 2022.

For the Summer of 2022, we are delighted to offer a new and improved in-person version of the lab, which will once again take place in Sloane Physics Lab, in rooms SPL 39-43!!

1 Physics S165/S166 Staff

- **Lead Course Instructor (S165/S166):** Prof. Sean Barrett sean.barrett@yale.edu
- **Course Instructor (S165/S166):** Dr. Sidney Cahn sidney.cahn@yale.edu
- **Course Instructor (S165/S166):** Prec. Caitlin Hansen caitlin.k.hansen@yale.edu
- **Teaching Fellow (S165 only):** David Nguyen david.nguyen@yale.edu
- **Teaching Fellow (S165/S166):** Maria Belota Moreno maria.belotamoreno@yale.edu
- **Teaching Fellow (S166 only):** Yarone Tokayer yarone.tokayer@yale.edu
2 PHYS S165/S166 Relies Upon Canvas

Make sure that you can access our course site on Canvas. This is where all information and materials needed to complete PHYS S165/S166 will be posted (as free downloads), and where you will upload your completed work. Quizzes will be administered over Canvas. The Canvas Calendar shows the plan for the course, and all due dates.

Send an email to Prof. Barrett <sean.barrett@yale.edu> if you encounter any difficulties, or if you have any questions.

3 Materials

- There is no textbook. Handouts (pdfs) for the lab experiments will be posted in the Files → Lab Handouts folder of our Canvas site. You may want to print them out, as you will need to read them carefully before, during, and after our lab sessions.
- For your lab notebook, use a quad ruled notebook (or quad ruled paper that you keep organized, in a folder). Laboratory notes will be uploaded with lab reports, but you should also keep the original past the end of the course(s).
- Scientific calculator, a ruler, and writing implements.
- Use Logger Pro (a free download) for data analysis. If possible, download a copy to run on your own computer, to enable you to open and work on files after your lab session.
- Recommendation: If you can bring your own laptop to class, please do so. During online-only labs, each student had to have their own computer, and there were clear advantages to that set-up. Moreover, it will be easier for us to stay spread out if we have more computers in the lab. If this is not possible, don’t worry, since each lab station has a desktop (i.e., one iMac for every two students), and you can email completed Logger Pro files to yourself from them.

4 Pre-lab Preparation

Allow at least an hour to prepare for each lab before you arrive.

- **Read the lab handouts.** Look up the concepts you found unfamiliar in a college level physics textbook or use Wikipedia. Review the references listed in the lab handout. In our experience, the time invested in this pre-lab reading will pay dividends as you do the lab.
- **Access the posted materials** The lab handout may mention videos or data files posted on Canvas. Preview any short videos for that lab, which we may also watch during the lab. Consider downloading data files for the lab to your computer. (Note: some videos and data files are only mentioned in the footnotes of the handouts. These are optional resources, which may be helpful to you, but you are not required to use them).
- **Prepare for the QUIZ.** To reward a careful reading of the lab handout, there will be approximately 8 short quizzes, offered through Canvas in the 24 hours prior to the beginning of most lab sessions (consult the Canvas Calendar). They will take less than 5 minutes, and are meant to be easy if you have done the reading.
5 In-person Lab Sessions

- The ten in-person sessions of the course start at 1:30 PM, EDT, on the dates shown in the Canvas course calendar. If there is a quiz (as shown on the Canvas calendar), then take that after you have read the handout, in the 24 hours before the lab session. Be prepared to start the lab at the beginning of each session.
- Lab sessions can be up to three hours long, but we expect that many labs will be completed in less time. Use this extra time to take good notes and to think things through, explore your own questions and make sure you understand not only what you are doing, but why you are doing it. This is the best way to prepare for the Lab Practical Exam explained below.
- Each student should actively participate in the Lab sessions. Take advantage of this chance to develop new skills, and to discuss the lab with your fellow students, your TF, and your Instructors. Try to understand all parts of the lab when we are working through it as a group, so you can build on these concepts when working by yourself during the Lab Practical Exam.
- Before leaving each Lab session, ask your TF to check your data, graphs, and analysis for completeness.
- Try to keep your workspace neat and organized, both to be safe and more efficient.
- We plan to hold labs during sessions 1-9, and to hold a Lab Practical Exam during session 10.

6 Lab Practical Exam

We are planning to hold a Lab Practical Exam (LPE) in the last session of the course (consult the Canvas course calendar for specific dates). In contrast to the Lab sessions, the LPE is a solo activity. The details will be announced as we get closer to the LPE. In the meantime, the best way to prepare for an LPE is to be an active participant in the lab when working with a partner, during the normal Lab sessions. Make sure that you understand the steps of each lab, and don’t hesitate to ask questions. This will help you when you need to work on an LPE by yourself.

7 Assignment Type 1: Quizzes

Quizzes will be run over Canvas. Once you start the Quiz, you have 5 minutes to complete it, so don’t start until after you have read the handout.

The due date for each Quiz is posted on the Canvas calendar, and in the Quizzes section of the Canvas site. Each Quiz will be available for 24 hours before the corresponding Lab takes place, so Canvas will score all missed Quizzes that you simply forget to take as 0/4 points. It would be a shame to throw these points away, so please make a habit of checking for Quizzes while you prepare for each Lab session.

The Canvas Quiz system seems to work pretty well, but write to Prof. Barrett if you experience technical trouble.

8 Assignment Type 2: Lab notebooks and reports

We posted an example of an online lab notebook and report in the Files →Reference Sheets & Useful Info folder of our Canvas site. Keep in mind that your lab notebook (completed during the
lab) and your one page report (completed after lab) should be understandable by a person who has not performed the experiment.

Your notebook and report should be uploaded, as a single document, to Canvas.

8.1 Lab notebook

- Record your name, your TF and the date. When you work with partner(s), record their names too.
- Record the apparatus used and/or make a simple drawing of the set-up.
- Write a general description of your plan, even if only "We followed the procedure in section 2.1 of the lab handout."
- Record possible sources of error, problems encountered, and decisions made.
- Cross out erroneous data, do not destroy or throw them away. Mistakes happen! Leave them legible and write a short note about why you discarded them.
- Don’t use scrap paper. That is what your lab notebook is for! Everything goes in your notebook (or an organizing folder).
- Copy and paste graphs and images into a MS Word file. After you have collected all your graphs for the session, they will occupy only one or two pages, which will be easier to print or upload.

8.2 Lab reports

- Lab reports are limited to one page. Scientific writing is succinct. A goal of this course is for you to learn to write precisely while still making an effective argument. You will have to judge what things are important and communicate them efficiently. Tiny fonts and narrow margins are a clear indication that this has not been achieved.
- Insight is an important part of your report. Do you understand what you were doing, or were you merely doing as instructed? Explain what you learned, not just what you did. Demonstrate your understanding by offering plausible sources of error based on physical principles (vague sources like "human error" are not acceptable). Offer possible improvements to your methods and techniques that would help the problems you encountered. Connect the concepts you learned in class to everyday experience, other experiments you’ve done in this class or even other courses.
- Lab reports are to be written individually. Any submissions with plagiarized writing will receive no credit and result in a grade of "F" for the course.

8.3 Grading rubric for the lab notebooks and reports
<table>
<thead>
<tr>
<th>Item</th>
<th>Points</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notebook</td>
<td>10</td>
<td>Can it be followed by someone who has not done the experiment, but has access to the course materials?</td>
</tr>
<tr>
<td>Data</td>
<td>18</td>
<td>Was the required data taken? Is it presented in an organized and readable way?</td>
</tr>
<tr>
<td>Analysis</td>
<td>18</td>
<td>Discussion of results and answers to specific questions posed in the lab handout.</td>
</tr>
<tr>
<td>Summary</td>
<td>10</td>
<td>Is the lab report summary cohesive and concise? Were all the important topics covered and well communicated?</td>
</tr>
<tr>
<td>Insight</td>
<td>4</td>
<td>Demonstrate a deeper understanding and synthesis of the physical concepts by connecting to examples not specifically mentioned in the handout or by discussing plausible sources of error or experimental improvements based on sound physical principles.</td>
</tr>
</tbody>
</table>

| Total | 60 | Lab reports comprise 60% of the total course grade. |

9 Assignment Type 3: Lab Practical Exam

- We are planning to hold a Lab Practical Exam (LPE) in the last week of classes (consult the Canvas course calendar for specific dates).
- In contrast to the Lab sessions, the LPE is a solo activity. The best way to prepare for it is by actively working with your partner(s) in the Lab sessions.
- The details will be announced as we get closer to that week.

10 Submit Assignments to Canvas by Due Date

You will need to upload your assignments to Canvas.

1. Due date of the lab notebook and lab report: upload this as a single file to Canvas, by no later than 11:59 PM, 3 days after each lab session. For a Tuesday lab session, upload your work to Canvas before midnight on Friday. For a Thursday lab session, upload your work to Canvas before midnight on Sunday. Canvas will be enforcing late penalties automatically, so to avoid losing points due to last-minute WiFi issues, tell yourself that the deadline is actually 10 PM, and treat the gap between 10-11:59 PM as the ‘grace period’.
 - Exception #1 for due date of the lab notebook and report: The last lab of the term will not require a report, so you can upload it before you leave the session, although the due date on the Canvas course calendar is a day later.

2. Due date of the LPE: same day as your LPE, details to be announced.

11 Late Submissions, Special Rules for Summer 2022

It is always in your best interest to submit all Assignments by no later than the Due Date. The labs cover many different topics in a short time, and it gets much harder to do your best work if you fall behind. Thus, for in-person PHYS S165/S166, the policy is to penalize late submissions by -15% per day late (weekends count too!)

In the Summer of 2022, Canvas will automatically implement this policy for Assignment Type 2 (Labs). Specifically, the policy is to penalize late submissions by -15% per day late (weekends count too!)
count too!) On Canvas, uploading even 1 minute late is the same as 23.5 hours late, so don’t wait until the last possible moment. Note also that Canvas only counts the last upload, so re-uploading to add one figure 2 days after the due date costs you -30%, which is not a good trade-off. **Bottom line:** upload all parts of your submission before the due date, and don’t re-upload tiny changes after the due date!

We recognize that the pandemic presents tremendous challenges to everybody, and we should adapt to the needs of our time. We will modify our normal late policy, to build in a bit more flexibility. While we strongly encourage you to submit all Assignments by the Due Date, we will use Special Rules for Late Submissions, in Summer 2022:

1. There are nine Labs that you will upload to Canvas. If necessary, you can have an additional 24 hours to turn in up to 2 of them, and they will be considered ‘on time’. To help us distinguish between unintentional upload failures and an intentional use of a 24-hour extension (which Prof. Barrett needs to implement manually), please send an email (To: your TF, Cc:Prof. Barrett) whenever you are using one of your 2 Lab extensions. Please identify the Lab that you are using it for.
2. The two self-approved extensions described above don’t require any request in advance. Use them when and if you need them.
3. For certain circumstances (e.g., positive Covid tests in the living space, health issues, utility outages, or other challenges), additional extensions may be warranted. To see if an Instructor-approved extension applies to your situation, reach out to Prof. Barrett by no later than the Due Date(s) in question, or as soon as your circumstances allow (e.g., if you are knocked off the grid for 2 days, then reach out to Prof. Barrett on day 3).

As always, let us know if you have any questions or concerns.

12 Lab Attendance and Make Ups

Attendance is mandatory. Due to the rapid pace and logistics of the course, you must attend each of the lab sessions (consult the Canvas course calendar for dates). Contact Prof. Barrett as soon as possible if last-minute issues prevent attendance, so we can figure out how to proceed.

In general, the Yale Summer Session requires courses to end on schedule: any work that is incomplete on the final day of classes can be made up only with the permission of the Instructor and the written permission of the Dean of Yale Summer Session (this permission must be requested prior to the last day of class).

13 Course Grades

Your final course grade will be weighted as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Reports</td>
<td>60%</td>
</tr>
<tr>
<td>LPE</td>
<td>25%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>15%</td>
</tr>
</tbody>
</table>
14 Lab Topics for Each Course (subject to modifications)

<table>
<thead>
<tr>
<th>PHYS S165</th>
<th>PHYS S166</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Galileo’s Pendulum</td>
<td>1-Lab Equipment</td>
</tr>
<tr>
<td>B-Uncertainties</td>
<td>2-Simple Signals</td>
</tr>
<tr>
<td>C-Accelerated Motion</td>
<td>3-Signal Reconstruction and Coupled Oscillators</td>
</tr>
<tr>
<td>D-Terminal Velocity</td>
<td>4-Forced Damped Oscillators</td>
</tr>
<tr>
<td>E-Collisions</td>
<td>5-Charge, Capacitors, and Exponential Decay</td>
</tr>
<tr>
<td>F-Simple Harmonic Motion</td>
<td>6-Circuit Elements and the Circulatory System</td>
</tr>
<tr>
<td>G-Rotation</td>
<td>7-Electromagnetic Induction and EKGs</td>
</tr>
<tr>
<td>H-Gyroscope</td>
<td>8-RLC circuits</td>
</tr>
<tr>
<td>I-Radioactivity</td>
<td>9-Geometric Optics</td>
</tr>
<tr>
<td>K-Fluids and Gas Laws</td>
<td>10-Diffraction</td>
</tr>
</tbody>
</table>