Description

Introduction to the intellectual enterprises of computer science and to the art of
programming. Students learn how to think algorithmically and solve problems efficiently.
Topics include abstraction, algorithms, data structures, encapsulation, resource
management, security, software engineering, and web development. Languages include
C, Python, SQL, and JavaScript, plus CSS and HTML. Problem sets inspired by
real-world domains of biology, cryptography, finance, forensics, and gaming. See
CS50’s website, cs50.vale.edu, for additional information. No previous programming
experience required. Open to students of all levels and majors.

Expectations
You are expected to

watch all lectures,

attend eight sections,

solve eight problem sets,

submit eight checks for understanding, and
design and implement a final project.

Learning Objectives
Among this course’s objectives are that you learn how to:

think more methodically;

program procedurally;

represent and process information;

communicate succinctly and precisely;

solve problems efficiently;

recognize patterns among problems;

decompose problems into parts and compose solutions thereto;

operate at multiple levels of abstraction;

separate design from implementation details;

infer from first principles how systems work;

assess the correctness, design, and style of code;

teach yourself new languages;

identify threats to privacy and security;

read documentation, drawing conclusions from specifications;

test solutions to problems, find faults, and identify corner cases;
describe symptoms of problems precisely and ask questions clearly; and
identify and quantify trade-offs among resources, particularly time and space.


https://cs50.yale.edu/2023/fall/syllabus/#description
https://cs50.yale.edu/
https://cs50.yale.edu/2023/fall/syllabus/#expectations
https://cs50.yale.edu/2023/fall/syllabus/#learning-objectives

Ultimately, the course aspires to provide you with a foundation for further studies in
computer science and to empower you to apply computer science to problems in other
domains.

Outline

Outlined below is the course’s subject matter, organized by week, each subtitled per to
the context in which its topics are introduced.

Week 1 Intro to C & Arrays

C. Source Code. Machine Code. Compiler. Correctness, Design, Style. Visual
Studio Code. Syntax Highlighting. Escape Sequences. Header Files. Libraries.
Manual Pages. Types. Conditionals. Variables. Loops. Linux. Graphical User
Interface (GUI). Command-Line Interface (CLI). Constants. Comments.
Pseudocode. Operators. Integer Overflow. Floating-Point Imprecision.
Preprocessing. Compiling. Assembling. Linking. Debugging. Arrays. Strings.
Command-Line Arguments. Cryptography.

Week 2 Algorithms & Memory

Searching: Linear Search, Binary Search. Sorting: Bubble Sort, Selection Sort,
Merge Sort. Asymptotic Notation, Recursion.

Pointers. Segmentation Faults. Dynamic Memory Allocation. Stack. Heap. Buffer
Overflow. File 1/0. Images.

Week 3 Python & SQL

Python: Functions, Arguments, Return Values; Variables; Boolean Expressions,
Conditionals; Loops. Modules, Packages.

SQL: Tables; Types; Statements; Constraints; Indexes; Keywords, Functions;
Transactions. Race Conditions. SQL Injection Attacks.

Week 4 HTML, CSS, JavaScript & Flask

Internet: Routers; TCP/IP; DNS. HTTP: URLs, GET, POST. HTML: Tags;
Attributes. Servers. Regular Expressions. CSS: Properties; Selectors.
Frameworks. JavaScript: Variables; Conditionals; Loops. Events.

Flask. Route. Decorators. Requests, Responses. Sessions. Cookies.


https://cs50.yale.edu/2023/fall/syllabus/#outline
https://cs50.yale.edu/2023/fall/syllabus/#week-1-c
https://cs50.yale.edu/2023/fall/syllabus/#week-3-algorithms
https://cs50.yale.edu/2023/fall/syllabus/#week-6-python
https://cs50.yale.edu/2023/fall/syllabus/#week-8--html-css-javascript

Grades

You are encouraged to take CS50 Credit/D/Fail if you will feel less nervous without the
pressure of a letter grade. Note it will only satisfy the QR requirement if you take it for a
grade. Please also remember that your course grade will reflect how much you progress
over the semester. We expect you to work hard and learn a lot, and your course grades
will reflect that. Course grades tend to be quite high in CS50.

Whether taking the course Credit/D/Fail or for a letter grade, you must ordinarily submit
all problem sets, checks for understanding, one test, and submit a final project unless
granted an exception in writing by the course’s heads. Multiple missing problem sets, a
missing check for understanding or final project, and violations of the academic honesty
policy may each result in a reduced or failing grade.

Graduate and professional students are expected to produce a final project that is 50%
greater in scope than what is expected of undergraduate students. Your course grade
will be adapted to the prevailing standards of your school, but we encourage you to take
the class Pass/Fail if your degree program permits it.

Final grades are determined using the following weights:

Problem Sets 50%

Checks for Understanding 10%

Final Project 20%

Attendance* 20%

* At sections.

Books
No books are required or recommended for this course.


https://cs50.yale.edu/2023/fall/syllabus/#grades
https://cs50.yale.edu/2023/fall/syllabus/#books

Sections

Lectures are supplemented by in-class discussion sections held twice weekly.
Attendance at sections is expected.

Problem Sets

Problem sets are programming assignments that allow you to implement each lecture’s
concepts in code.

Late work is not ordinarily accepted, except with a Dean’s excuse. See Lateness Policy
for more information. (Graduate students should e-mail heads@cs50.yale.edu as early
as possible to request an extension.)

Checks for Understanding

Checks for understanding (“checks”) are short assignments due after each lecture that
ask you to practice applying each lecture’s concepts. Among the goals of the checks for
understanding are that you synthesize knowledge from class alone. You may use any
materials on CS50’s course website (i.e., cs50.harvard.edu), but nothing else (i.e., you
may not use tools like cs50.ai or cs50.dev, nor search for information on the internet at
large). The only humans to whom you may turn for help or from whom you may receive
help are the course’s heads. Your 7 highest scores will be counted towards your final
grade.

Final Project

The climax of this course is its final project. The final project is your opportunity to take
your newfound savvy with programming out for a spin and develop your very own piece
of software. So long as your project draws upon this course’s lessons, the nature of
your project is entirely up to you, albeit subject to the staff’s approval. You may
implement your project in any language(s) as long as the staff approves. You are
welcome to utilize any infrastructure, provided the staff ultimately has access to any
hardware and software that your project requires. All that we ask is that you build
something of interest to you, that you solve an actual problem, that you impact campus,
or that you change the world. Strive to create something that outlives this course.

Inasmuch as software development is rarely a one-person effort, you are allowed an
opportunity to collaborate with one or two classmates for this final project. Needless to
say, it is expected that every student in any such group contribute equally to the design
and implementation of that group’s project. Moreover, it is expected that the scope of a
two- or three-person group’s project be, respectively, twice or thrice that of a typical
one-person project. A one-person project, mind you, should entail more time and effort
than is required by each of the course’s problem sets. Although no more than three


https://cs50.yale.edu/2023/fall/syllabus/#sections
https://cs50.yale.edu/2023/fall/syllabus/#problem-sets
https://cs50.yale.edu/2023/fall/syllabus/#checks-for-understanding
https://cs50.harvard.edu/college
https://cs50.ai/
https://cs50.dev/
https://cs50.yale.edu/2023/fall/syllabus/#final-project

students may design and implement a given project, you are welcome to solicit advice
from others, so long as you respect the course’s policy on academic honesty.

Extensions on the final project always require a Dean’s excuse (graduate students must
provide documentation of a genuine emergency). Late submissions will receive no
credit.

Milestone Deadline
Proposal TBD
Status Report TBD
Implementation TBD
CS50 Fair

The CS50 Fair is an epic display of final projects. Not only is the CS50 Fair a venue at
which to see classmates’ projects and demo your own, it is an opportunity to mingle with
students, faculty, and staff from across campus.

Attendance is expected of all students.

Also in attendance are popcorn, candy, and a raffle with (fabulous) prizes. Family and
friends are welcome to join.

Lateness

We do not accept late checks for understanding or labs except in cases of serious,
multi-week illnesses and emergencies that receive a dean’s excuse. However, we will
drop the two lowest/missed checks for understanding to account for shorter illnesses
and other problems.

Late pset submissions are not accepted without a dean’s excuse. However, we will
allow a single 72 hours pset extension for all undergraduate students, known as the
brink clause. The brink clause must be invoked prior to the pset deadline and cannot be
revoked. To use this extension, fill out this form, and please use this as an opportunity to
let us know if you have been struggling in the course. We will follow up with an email
and a meeting to help you get back on track.


https://cs50.yale.edu/2023/fall/syllabus/#cs50-fair
https://cs50.yale.edu/2023/fall/syllabus/#lateness
https://forms.gle/HNLDMZu8S7HWWQTBA

Graduate students must receive an extension in advance from instructors. In addition to
documented illness and emergencies, we recognize that graduate programs often have
a week sometime during the semester when students must dedicate all their time to a
single project or activity. We therefore allow graduate students a single, one-week pset
extension provided it is requested by at least 72 hours before the deadline by e-mail to
heads. This does not apply to checks for understanding, which are covered by the
policy above.

Academic Honesty

This course’s philosophy on academic honesty is best stated as “be reasonable.” The
course recognizes that interactions with classmates and others can facilitate mastery of
the course’s material. However, there remains a line between enlisting the help of
another and submitting the work of another. This policy characterizes both sides of that
line.

The essence of all work that you submit to this course must be your own and you must
explicitly cite anyone you collaborate with and any resources you use that are not part
of the course material or directly linked from the pset instructions.

You may ask classmates and others for help on psets, and you may use outside
resources that do not reduce to another doing your work for you. You must
document via comments at the top of your related code file the full name of the
person you discussed with (“John Q. Adams” is good, “my roommate,” “my tutor,’
or “Natalie” is not), or the complete URL or reference for the outside resource;
what you discussed, and how that helped you.

You must also cite any help or discussions you have with other students in the
class in your solution comments.

You may not post your code online, and you may not look at or use online
solutions to the psets.

Collaboration on the course’s checks for understanding is not permitted at all.
Collaboration on labs is permitted in pairs during section, provided it is
documented in your program comments. Further work on labs outside section
must be individual. Collaboration on the course’s final project is permitted only to
the extent prescribed by its specification.

Regret clause. If you commit some act that is not reasonable but bring it to the attention
of the course’s heads within 72 hours, the course may impose local sanctions that may
include an unsatisfactory or failing grade for work submitted, but the course will not refer
the matter for further disciplinary action unless another infraction occurs. You may
invoke this clause only once for a true infraction, but if you self-report something that the


https://cs50.yale.edu/2023/fall/syllabus/#academic-honesty

course heads feel is not a significant violation, it will not count against you or count as
your one invocation.

In cases of suspected violations involving students at both Harvard and Yale, students
will be referred to the appropriate committee at their university. Those committees may
exchange information for the purpose of resolving the cases in accordance with their
own procedures. They may also reach different conclusions and impose different
sanctions from the same set of facts and evidence.

Below are rules of thumb that (inexhaustively) characterize acts that the course
considers reasonable and not reasonable. If in doubt as to whether some act is
reasonable, do not commit it until you solicit and receive approval in writing from the
course’s heads. Acts considered not reasonable by the course are handled harshly. If
the course refers some matter for disciplinary action and the outcome is punitive, the
course reserves the right to impose local sanctions on top of that outcome that may
include an unsatisfactory or failing grade for work submitted or for the course itself.

Reasonable
Communicating with classmates about problem sets’ problems in English (or
some other spoken language), and properly citing those discussions.
Discussing the course’s material with others in order to understand it better. You
do not need to cite this if it isn’t related to the pset, but we encourage citing and
note-taking on your discussion anyway.
Helping a classmate identify a bug in their code at office hours, elsewhere, or
even online, as by viewing, compiling, or running their code after you have
submitted that portion of the pset yourself. Add a citation to your own code of the
help you provided and resubmit.
Incorporating a few lines of code that you find online or elsewhere into your own
code, provided that those lines are not themselves solutions to assigned
problems and that you cite the lines’ origins in a comment in your code and in
your program comments.
Reviewing past semesters’ tests and quizzes and solutions thereto that are made
available by the course. (You do not need to cite this; it is considered part of the
standard course materials.)
Sending or showing code that you've written to someone, possibly a classmate,
so that he or she might help you identify and fix a bug, provided you properly cite
the help. If it is a classmate, make sure they cite giving the help as well.
Submitting the same or similar work to this course that you have submitted
previously to this course, CS50 AP, or CS50x, so long as you disclose as much in
your submission, as via comments in your code. Please include a comment at


https://cs50.yale.edu/2023/fall/syllabus/#reasonable

the top of the file indicating it is a resubmission to eliminate any potential
confusion.

Turning to the course’s heads for help or receiving help from the course’s heads
with the checks for understanding.

Turning to the web or elsewhere for instruction beyond the course’s own, for
references, and for solutions to technical difficulties, but not for outright solutions
to problem set’s problems or your own final project. Cite any such resources in
your program comments, especially if they are related to a pset.

Using CS50’s own Al-based software, including the CS50 Duck (ddb) in cs50.ai
and cs50.dev as well as in Ed.

Whiteboarding solutions to problem sets with others using diagrams or
pseudocode but not actual code. Cite who you discussed with and what you
discussed in your program comments, even if you are doing this in office hours
under TA supervision. It helps avoid misunderstandings down the road.

Working with (and even paying) a tutor to help you with the course, provided the
tutor does not do your work for you and you cite the pset help you receive in your
program comments.

Not Reasonable
Accessing a solution to some problem prior to its deadline or (re-)submitting your
own.
Accessing or attempting to access, without permission, an account not your own.
Asking a classmate to see their solution to a problem set’s problem before its
deadline or (re-)submitting your own.
Decompiling, deobfuscating, or disassembling the staff’'s solutions to problem
sefts.
Discovering but failing to disclose to the course’s heads bugs in the course’s
software that affect scores.
Decompiling, deobfuscating, or disassembling the staff’s solutions to problem
sets.
Failing to cite (as with comments) the origins of code or techniques that you
discover outside of the course’s own lessons and integrate into your own work,
even while respecting this policy’s other constraints.
Giving or showing to a classmate a solution to a problem set’s problem when it is
he or she, and not you, who is struggling to solve it.
Looking at another individual’s work on the quizzes.
Manipulating or attempting to manipulate scores artificially, as by exploiting bugs
or formulas in the course’s software.
Paying or offering to pay an individual for work that you may submit as (part of)
your own.


https://cs50.ai/
https://cs50.dev/
https://cs50.yale.edu/2023/fall/ed/
https://cs50.yale.edu/2023/fall/syllabus/#not-reasonable

Providing or making available solutions to problem sets to individuals who might
take this course in the future.

Searching for or soliciting outright solutions to problem sets online or elsewhere.
Splitting a problem set’s workload with another individual and combining your
work.

Submitting (after possibly modifying) the work of another individual beyond the
few lines allowed herein.

Submitting the same or similar work to this course that you have submitted or will
submit to another (non-CS50) course.

Submitting work to this course that you intend to use outside of the course (e.g.,
for a job) without prior approval from the course’s heads.

Turning to humans (besides the course’s heads) for help or receiving help from
humans (besides the course’s heads) on the checks for understanding or test.
Using Al-based software other than CS50’s own (e.g., ChatGPT, GitHub Copilot,
Bing Chat, et al.) that suggests or completes answers to questions or lines of
code.

Viewing another’s solution to a problem set’s problem and basing your own
solution on it.

Viewing the solution to a lab before trying to solve it yourself.



